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Over the last fifteen years, the interest in nonlinear time series models has been steadily 
increasing. Univariate time-series models may not work successfully if they restrict only 
to linear functions of past observations. The same past may well contain useful 
information for the present and future if the dependence is nonlinear. Among nonlinear 
functions we shall consider the simplest of the family of heteroscedastic models - the 
autoregressive conditional heteroscedastic or ARCH model that is based on the 
conditional variance structure. This model was first applied by Engle (1982) to estimate 
the variance of U.K. Inflation. The aim of this article is to find out whether ARCH models 
should also be applied to quarterly time series of the Portuguese Imports (escudos) for the 
period 1976 – 2004. 

 

1. ARIMA models for the Portuguese Imports 

ARIMA modelling of time series is based on weak stationarity which requires that, if the 
time series yt is not constant in the mean and variance over time, some appropriate 
transformations can be performed in such a way to render that process stationary. These 
kind of models are then used to forecast future values of yt , t =1, …, T, based on the 
conditional means of the series, implicitly assuming that the conditional variance remains 
constant. However, many economic time series (financial aggregates, interest rates, 
exchange rates, consumer price index and so on) do not have a constant mean and most of 
them exhibit phases of relative tranquillity followed by periods of high volatility.  

Figure 1a shows that there is little point in modelling the quarterly time series for the 
Portuguese Imports as being stationary. There is positive trend. The first difference of the 
series presented in Figure 1b shows constant mean in the first part of the series although 
the end of the series suggests that the variance increases with time. Therefore, the 
logarithm of the imports (ln import_pt) series should be used to better capture the growth 
rates. This series shows almost constant trend. As shown in Figure1d, the first difference 
of the ln import_pt series is the most likely candidate to be covariance stationary. The 
augmented Dickey and Fuller test shows that the ln import_pt series is mean stationary 
(ADF = -4,50412 < 1% critical value = -0,35814). So, an appropriate ARIMA model can 
be applied to this series. Additional analysis will show whether an ARCH model should 
be better candidate for modelling the Portuguese Imports.   
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Figure 1a Series of the Portuguese Imports 1976 –2005 (Import_pt) 

 

 

Figure 1b First difference series of the Portuguese Imports 1976 –2004 

 

Figure 1c First difference series of log (Import_pt) 

 

To forecast the quarterly Portuguese Imports for the period 1976– 2005, two ARIMA 
models – ARIMA(3, 1, 0) and ARIMA (0,1,3) – were identified. The ARIMA (3,1,0) was 
chosen taking into account the following analysis of the transformed time series: 

• The ACF for (1-B) log  (IMPORT t) (see Fugure 2a) showed that only the third 
coefficient is statistically significant at the 5 percent significance level. Forcing the 
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two first coefficients to be zero, the coefficient is: r3 = 0,435 with se(r3) = 0,133. 
Similar conclusion can be taken from the PACF of (1-B) log  (IMPORT t) series (see 
Figure 2b), in which φ3 = 0,347 with standard error se(φ3) = 0,141.  

• After the estimation of both models, model comparison procedure, presented in Table 
1, reveals that both models (A) = ARIMA(3,1,0) with constant and (B) = 
ARIMA(0,1,3) with constant are comparable in their standard errors of estimate 
(RMSE). The residuals of both models are not autocorrelated, but the residuals of 
model (B) are worse than the residuals of model (A) because they are not stable in 
their means.      
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Figure 2a ACF for the first differences of the 1n(Import_pt) series 
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Figure 2b PACF for the first differences of the ln(Import_pt) series 

 

Table 1  Diagnostic checks for model adequacy during the estimation period 1948–1996  

 

Figure 3 shows that, in spite of the fact that residuals are not correlated, they show high 
error variances, estimated by variance of residuals ht = MSE = 2,68764E10 and standard 
deviation of residuals SE = 163 940. 

Model (A) will be used to forecast the time series of the Portuguese Imports using a 
model of the form 

(1-φ3B
3 )(1-B) log (IMPORTt) = K + a t , 

and its estimate 

(1–0,435B3)(1-B)log (IMPORTt) = 0,123 + at.                                               (1) 

                 (0,133)         (0,030) 

 

Model   RMSE       MAPE     MPE     AUTO  MEAN    VAR 

--------------------------------------------------------------------------------------------------------- 

(A)      163940,0      9,33    –0,014      OK         OK        OK    

(B)      161950,0      9,44    –0,196      OK          **         OK      

--------------------------------------------------------------------------------------------------------- 

Note: * = marginally significant (0.05 < p <= 0.10), **  = significant (0,01 < p ≤ 0,05) 
and  

         *** = highly significant (p ≤ 0,01). 

AUTO = Box-Pierce test for excessive autocorrelation 

MEAN = Test for difference in mean 1st half to 2nd half 

VAR = Test for difference in variance 1st half to 2nd half 
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Figure 3 Residuals for ARIMA(3,1,0) model with constant 

 

The estimated white noise variance is 015546802 ,ˆ =σ with 45 degrees of freedom, 
corresponding to an estimated white noise standard error of .,ˆ 124690=σ  The Box-Ljung 
test using the 16 first autocorrelation coefficients of the errors rejects the null hypothesis 
of linear independence (Q (16) = 17,363, P=0,363, α =0,05).  

Forecasts for the period 1996-2000 are presented in the Table 2. 

Table 2   Forecasts of the Portuguese Imports using the estimated ARIMA (3,1,0) model 

 

According to Table 1, it is expected that the Import forecasts will overestimate the reality 
about 9,33 %.  

 

 

 

 

 

                                           Lower 95,0%     Upper 95,0%          

Period          Forecast                Limit                  Limit                Reality                      AE 

------------------------------------------------------------------------------------------------------------
--------- 

1996             5,49533E6        4,28320E6        7,05049E6           5,427132E6          
6,8198E4 

1997             6,20796E6        4,23564E6        9,09869E6           6,139709E6          
6,8251E4 

1998             6,94066E6        4,25453E6        1,13227E7           6,914779E6          
2,5887E4 

2009             7,57214E6        3,96217E6        1,44712E7           7,519209E6          
5,2931E4 

2000             8,49296E6        3,83102E6        1,88280E7           8,672286E6       -
17,9326E4 
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2. Autoregressive Conditional Heteroscedastic Model 

The error variance for the ARIMA (3,1,0) model previously estimated is not constant. 
There is an autoregressive coefficient which can be the consequence of the ARCH effect 
in the errors as Weiss (1984) concluded in his work. What is the meaning of an ARCH 
effect? 

According to Engle´s strategy, when the conditional variance is not constant, it is possible 
to model the conditional variance as an AR(q) process using the square of the estimated 
residuals obtained from the application of the ARIMA (3,1,0) model to the series yt (the 
transformed Imports) 

t
2

qtq
2

2t2
2

1t10
2

tt aaaah ν+α++α+α+α== −−− ˆ...ˆˆˆ ,                           (2) 

where ν t  is a white-noise process.  

Then, the best fitted ARIMA model for yt together with model (2) is named an 
autoregressive conditional heteroscedastic model ARCH(q).  

To test ARCH(q) effect in the time series, the correlogram should suggest such process. 
The technique is as follows: 

Step 1. Estimate for the time series yt  the best-fitting ARIMA model (or regression 

model) and obtain the squares of the fitted errors $at
2 . Also calculate the sample variance 

of residuals $ $ /σ2 2

1

=
=
∑a Tt
t

T

, where T is the number of residuals. 

Step 2. Calculate and plot the sample autocorrelation of the squared residuals as  
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Step 3.  Test the hypothesis  

H 0 : No ARCH(q) effect 

H 1 :  ARCH effect present. 

There are several tests to take an appropriate decision:  

• For large samples, the standard deviation of rk can be approximated by T1/ . 
Individual values of rk significantly different from zero at 5 % significance level are 
indicative of ARCH errors, if  

| r k | > T2 /                                                                                     (4) 

• Ljung-Box Q-statistics can be used to test for groups of the first m autocorrelation   
coefficients. In practice, we could consider values of m up to T/4. 

 The test statistic    

∑
=

−+=
m

1k
k kTr2TTQ )/()(                                                             (5) 

has an asymptotic χ2 distribution with m degrees of freedom if the $at
2  are   
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      uncorrelated. For a given significance level α, the null hypothesis is rejected if  

      Q > )(m2
αχ .  Rejecting the null hypothesis that $at

2  are uncorrelated is equivalent 
to rejecting the null hypothesis of no ARCH errors.  

• The more formal Lagrange multiplier test for ARCH disturbances was proposed by 
Engle (1982). The methodology differs from the previous one, that we regress squared 

residuals $at
2 on a constant and the q lagged values $at−1

2 , $at−2
2 , $at−3

2 , ...,  $at q−
2 . That 

is, we will estimate the coefficients α i of model (2) using OLS method. If there is no 
ARCH effect, the values of α i  for i = 1, ..., q should be zero. Hence, this regression 
will have little explanatory power so that the coefficient of deremnination (i.e. the 
usual R2 – statistic will be quite law. With a sample of T residuals, under the null 
hypothesis of no ARCH errors, the test statistic LM = TR2 converges to χ 2 (q) 
distribution. If LM = TR2 is sufficiently large, rejection of the null hypothesis that α 1 
through α q are jointly equal to zero is equivalent to rejecting the null hypothesis of no 
ARCH errors. On the other hand, if LM = TR2 is sufficiently low, it is possible to 
conclude that there are no ARCH effects.  

To obtain a better idea of actual process of fitting an ARCH model, let us reconsider the 
series of the Portuguese Imports used in the previous section. Recall that the Box-Jenkins 
approach led to estimate a model ARIMA(3,1,0) with the form (1). Diagnostic checks of 
residuals for this model did not indicate the presence of serial correlation, but there was a 
period of unusual volatility that could be characteristic of an ARCH process. Now, the 
aim is to examine the autocorrelation function of the squared residuals to find out the 
order of AR(q) model for them, which is equivalent to ARCH (q) model.  

As it can be seen from Figure 4a, the null hypothesis of no ARCH process is rejected 
because two individual partial coefficients of autocorrelation are statistically significant 
for the 5 % level of significance. 
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Figure 4  Squared residuals of the ARIMA(3,1,0) model   
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Figure 4a  ACF of the squared residuals of ARIMA (3,1,0) model 

 

We will use Lagrangian multiplier test to find out the order of the ARCH model. We 
perform the second order regression, of the following form 

t
2

2t2
2

1t10
2

tt aaah ν+α+α+α== −− ˆˆˆ , 

and its estimation is 

RESImpSQt = 1,12301E10 + 0,296469*RESImpSQt–1 + 0,303303*RESImpSQt–2, 

                          (1.11E10)       (0,147)                                (0,149) 

where ht = RESImpSQ t is the name of squared residual of the model ARIMA(3,1,0)), 

           RESImpSQ t–1 = $at−1
2 and RESImpSQ t–2 = $at−2

2 . 

All coefficients of the estimated regression model are statistically significant at 5 % level 
of significance, but not constant (standard errors in parentheses). Further statistics of 
regression are coefficient of determination R2 = 0,255761, standard error of estimation = 
7,07716E10 and Durbin-Watson statistic = 1,83. The value of the Langrangian multiplier 
is 

LM = T R2 = 48 * 0,255761 = 12,77 

Since LM > χ0 05
2 2 5 99, ( ) ,= , we can reject null hypothesis and conclude that an 

ARCH(2) model is appropriate for modelling volatility in errors of the Import series.    

The same results could be obtained by means of Ljung-Box Q-statistics used for the first 4 
autocorrelation coefficients of the squared residuals.  

The test statistic ∑
=

−+=
m

1k
k kTr2TTQ )/()( = 48*50 [(0,43/47) +(0,42/46) + (0,19/45) + 

(0,07/44)] = 57,82 and because it is greater than χ0 05
2 4 9 49, ( ) ,=  we conclude again, that 

there is an ARCH(2) effect.      
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3.  Conclusion 

Forecasts made by ARIMA (3,1,0) model assume time constant standard error of 
forecasts with value SE = 163 940, whereas forecasts made by ARIMA (3,1,0) model 
together with ARCH(2) model assume that the variance is a geometrically declining 
weighted average of the variance in the previous two years. This means that, for the future 
value of the Portuguese imports in 1996, we could expect smaller value for the forecast 
standard error (SE = 32 825). Hence, the Portuguese imports predictions of the two 
models should be similar, but the confidence intervals surrounding the forecasts will 
differ.  
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