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Over the last fifteen years, the interest in n@dintime series models has been steadily
increasing. Univariate time-series models may notkvsuccessfully if they restrict only
to linear functions of past observations. The sgmast may well contain useful
information for the present and future if the degesrce is nonlinear. Among nonlinear
functions we shall consider the simplest of theiliaraf heteroscedastic models - the
autoregressive conditional heteroscedastic or AR@Bdel that is based on the
conditional variance structure. This model wast fagplied by Engle (1982) to estimate
the variance of U.K. Inflation. The aim of thisial is to find out whether ARCH models
should also be applied to quarterly time seriethefPortuguese Imports (escudos) for the
period 1976 — 2004.

1. ARIMA modelsfor the Portuguese Imports

ARIMA modelling of time series is based on weakistarity which requires that, if the
time seriesy; is not constant in the mean and variance over tsoepe appropriate
transformations can be performed in such a wamoer that process stationary. These
kind of models are then used to forecast futureieslofy; , t =1, ..., T,based on the
conditional means of the series, implicitly assugrimat the conditional variance remains
constant. However, many economic time series (fr@naggregates, interest rates,
exchange rates, consumer price index and so onpdoave a constant mean and most of
them exhibit phases of relative tranquillity folled/by periods of high volatility.

Figure la shows that there is little point in mdidgl the quarterly time series for the
Portuguese Imports as being stationary. Theresgipe trend. The first difference of the
series presented in Figure 1b shows constant nmetoeifirst part of the series although
the end of the series suggests that the varianoeases with time. Therefore, the
logarithm of the imports (In import_pt) series slibbe used to better capture the growth
rates. This series shows almost constant trencgh&wn in Figureld, the first difference
of the In import_pt series is the most likely catede to be covariance stationary. The
augmented Dickey and Fuller test shows that thienport_pt series is mean stationary
(ADF = -4,50412 < 1% critical value = -0,35814)., @0 appropriate ARIMA model can
be applied to this series. Additional analysis whiow whether an ARCH model should
be better candidate for modelling the Portuguegmits.
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Figure 1a Series of the Portuguese Imports 1976 —2005 (Itnptr
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Figure 1b First difference series of the Portuguese Impt#&6 —2004
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Figure 1c First difference series of log (Import_pt)

To forecast the quarterly Portuguese Imports fer period 1976— 2005, two ARIMA
models — ARIMA(3, 1, 0) and ARIMA (0,1,3) — wereemntified. The ARIMA (3,1,0) was
chosen taking into account the following analydithe transformed time series:

« The ACF for (1-B) log (IMPORT) (see Fugure 2a) showed that only the third
coefficient is statistically significant at the ®rpent significance level. Forcing the
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two first coefficients to be zero, the coefficient r; = 0,435 with sef) = 0,133.
Similar conclusion can be taken from the PACF eBjllog (IMPORT/) series (see
Figure 2b), in whichp; = 0,347 with standard error gg((= 0,141.

After the estimation of both models, model compariprocedure, presented in Table
1, reveals that both models (A) = ARIMA(3,1,0) wittonstant and (B) =
ARIMA(0,1,3) with constant are comparable in thetandard errors of estimate
(RMSE). The residuals of both models are not autetaed, but the residuals of
model (B) are worse than the residuals of model {&gause they are not stable in
their means.
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Figure 2a ACF for the first differences of the 1n(Import_p#ries
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Figure 2b PACF for the first differences of the In(Import) peries

Table1l Diagnostic checks for model adequacy during thienasion period 1948—-1996

Model RMSE MAPE MPE AUTO MEAN AR
(A) 163940,0 9,33 -0,014 OK OK OK
(B) 161950,0 9,44 -0,196 OK ** OK

Note: * = marginally significant (0.05 < p <= 0.10) = significant (0,01 < p= 0,05)
and

*** = highly significant (p< 0,01).
AUTO = Box-Pierce test for excessive autocorretatio
MEAN = Test for difference in mean 1st half to Zmalf
VAR = Test for difference in variance 1st half tad?half

Figure 3 shows that, in spite of the fact thatdesls are not correlated, they show high
error variances, estimated by variance of residaalsMSE = 2,68764E10 and standard

deviation of residuals SE = 163 940.

Model (A) will be used to forecast the time seradsthe Portuguese Imports using a

model of the form
(1-:B° )(1-B) log (IMPORT) = K + a;_
and its estimate
(1-0,435B)(1-B)log (IMPORT) = 0,123 + a 1)
(0,133) (0,030)
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Figure 3 Residuals for ARIMA(3,1,0) model with constant

The estimated white noise variance d$ =0,0155468 with 45 degrees of freedom,
corresponding to an estimated white noise staneiamt of 6 =0,12469. The Box-Ljung
test using the 16 first autocorrelation coefficgent the errors rejects the null hypothesis
of linear independence (Q (16) = 17,363, P=0,8630,05).

Forecasts for the period 1996-2000 are presentdeifiable 2.

Table2 Forecasts of the Portuguese Imports using timasd ARIMA (3,1,0) model

Lower,0%  Upper 95,0%

Period Forecast Limit Limit Reality AE
1996 5,495&H 4,28320E6 7,05049E6 BIB2ES
6,8198E4

1997 6,20796E6 4,23564E6  9,09869E6 6,139709E¢
6,8251E4

1998 6,94066E6 4,25453E6  1,13227E7 6,914776E
2,5887E4

2009 7,57214E6 3,96217E6  1,44712E7 7,519209E¢
5,2931E4

2000 8,49296E6 3,83102E6 1,88280E7 8,672286E6 -
17,9326E4

According to Table 1, it is expected that the Intgorecasts will overestimate the reality
about 9,33 %.
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2. Autoregressive Conditional Heter oscedastic M odel

The error variance for the ARIMA (3,1,0) model poasly estimated is not constant.
There is an autoregressive coefficient which camhleeconsequence of the ARCH effect
in the errors as Weiss (1984) concluded in his wdvkat is the meaning of an ARCH
effect?

According to Engle’s strategy, when the conditiorsalance is not constant, it is possible
to model the conditional variance as an AR(q) pssaasing the square of the estimated
residuals obtained from the application of the ARINB,1,0) model to the serigg (the
transformed Imports)

ht = étz =dp +alét_12 +G2£1t_22 +...+O(qét_q2 +Vt y (2)
wherev, is a white-noise process.

Then, the best fitted ARIMA model foy; together with model (2) is named an
autoregressive conditional heteroscedastic mod€lAR®).

To test ARCH(q) effect in the time series, the elmgram should suggest such process.
The technique is as follows:

Step 1. Estimate for the time series ythe best-fitting ARIMA model (or regression
model) and obtain the squares of the fitted eréofs Also calculate the sample variance
T
of residualsG?® = Zétz / T, where T is the number of residuals.
t=1

Step 2. Calculate and plot the sample autocorrelation efsituared residuals as

2 3)

Step 3. Test the hypothesis
Ho: No ARCH(q) effect
H1: ARCH effect present.
There are several tests to take an appropriatsidaci

« For large samples, the standard deviation ,otan be approximated by/+/T .
Individual values of g significantly different from zero at 5 % significee level are
indicative of ARCH errors, if

|re]|> 2/T (4)

* Ljung-Box Q-statistics can be used to test for geoof the firstm autocorrelation
coefficients. In practice, we could consider valaési up to T/4.

The test statistic

Q=T(T+ z)irk /(T -k) (5)

k=1

has an asymptotig? distribution with m degrees of freedom if tﬁé are
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uncorrelated. For a given significance leveglhe null hypothesis is rejected if

Q >x%q(m). Rejecting the null hypothesis th?nf are uncorrelated is equivalent
to rejecting the null hypothesis of no ARCH errors.

* The more formal Lagrange multiplier test for ARCk$tdrbances was proposed by
Engle (1982). The methodology differs from the poeg one, that we regress squared

residualsd,*on a constant and the q lagged valaes’, a,_,%, &%, ..., &_,°. That

is, we will estimate the coefficients; of model (2) using OLS method. If there is no
ARCH effect, the values ofi, fori =1, ...,q should be zero. Hence, this regression
will have little explanatory power so that the deeént of deremnination (i.e. the
usual B — statistic will be quite law. With a sample ofr@siduals, under the null
hypothesis of no ARCH errors, the test statistic EMTR? converges tox ()
distribution. If LM = TR is sufficiently large, rejection of the null hypesis thatt 1
througha 4 are jointly equal to zero is equivalent to rejegtthe null hypothesis of no
ARCH errors. On the other hand, if LM = TR sufficiently low, it is possible to
conclude that there are no ARCH effects.

To obtain a better idea of actual process of fittam ARCH model, let us reconsider the
series of the Portuguese Imports used in the puewsection. Recall that the Box-Jenkins
approach led to estimate a model ARIMA(3,1,0) wiite form (1). Diagnostic checks of
residuals for this model did not indicate the pneseof serial correlation, but there was a
period of unusual volatility that could be charastec of an ARCH process. Now, the
aim is to examine the autocorrelation function loé squared residuals to find out the
order of AR(q) model for them, which is equivaléemtARCH (q) model.

As it can be seen from Figure 4a, the null hypathes no ARCH process is rejected
because two individual partial coefficients of adoelation are statistically significant
for the 5 % level of significance.
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Figure4 Squared residuals of the ARIMA(3,1,0) model
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Figureda ACF of the squared residuals of ARIMA (3,1,0) miode

We will use Lagrangian multiplier test to find otlte order of the ARCH model. We
perform the second order regression, of the folhguiorm

hy =ét2 =0p +0‘1é‘t—12 +0(2é‘t—22 Vi,
and its estimation is
RESIMpSQ®= 1,12301E10 + 0,296469*RESImpSf* 0,303303*RESIMpSQ,
(1.11E10)  (0,147) (0,149)
where h= RESImpSQ is the name of squared residual of the model AR(8/A0)),

RESIMpSQ; = &,_,°and RESImMpSQ, = 4&,_,°.

All coefficients of the estimated regression moal@ statistically significant at 5 % level
of significance, but not constant (standard eriarparentheses). Further statistics of
regression are coefficient of determinatioh=R0,255761, standard error of estimation =
7,07716E10 and Durbin-Watson statistic = 1,83. \Tdlee of the Langrangian multiplier
5

LM =T R*=48*0,255761 = 12,77

Since LM > )(01052(2):599, we can reject null hypothesis and conclude that a
ARCH(2) model is appropriate for modelling volailin errors of the Import series.

The same results could be obtained by means oftRox Q-statistics used for the first 4
autocorrelation coefficients of the squared redglua

m
The test statistionT(T+2)Zrk /(T —k)= 48*50 [(0,43/47) +(0,42/46) + (0,19/45) +
k=1
(0,07/44)] = 57,82 and because it is greater tj(l@gf (4) = 9,49 we conclude again, that
there is an ARCH(2) effect.
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3. Conclusion

Forecasts made by ARIMA (3,1,0) model assume tiroastant standard error of

forecasts with value SE = 163 940, whereas forsaaside by ARIMA (3,1,0) model

together with ARCH(2) model assume that the vaearsc a geometrically declining

weighted average of the variance in the previousy®ars. This means that, for the future
value of the Portuguese imports in 1996, we coujoket smaller value for the forecast
standard error (SE = 32 825). Hence, the Portugumeperts predictions of the two

models should be similar, but the confidence irgksnsurrounding the forecasts will

differ.
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