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 In the 1st part the finite structures of numbers are defined and - by means of 
transformations - also conical and cylindrical surfaces over these structures are introduced. 
At the principal difference between the theory of surfaces over these structures and over real 
numbers points the Remark 1.1. In the 2nd part there is the construction of the intersection of 
such two surfaces, at least one of which is quadratic. Remark 2.3 generalizes the validity of 
this theory for today-constructed computers. 

 
1. Finite structures of numbers 

Let  n  be a given integer. Let  G  be a finite set of exactly  n-digit decimal numbers of the 
form 

(1.1) κ±×± )10(. 321 ncccc Κ , 

where }9,,1,0{ Κ∈ic  are ciphers, 01 ≠c  for the numbers different from zero and 
}99,,1,0{ Κ∈κ .  

Let  R  be the set of all real numbers including the four constants e,,1,0 π ,  four binary 
operations ÷×−+ ,,, , the relation < and ten functions ,arcsin,tan,cos,sin, ,arccos  

abs,ln,exp,arctan . Let :T  G →  R  be an embedding, i.e. mapping which maps an arbitrary 
number of   G   into the same number of  R . Let :T ′  R →  G  be such a mapping, which maps 
the number  

(1.2) κ±
++ ×± )10(. 21321 ΚΚ nnn cccccc , 

of  R  in an infinite decimal expansion into the number  (1.1)  of  G .  

By using the mappings TT ′,  we get in G associated restrictions of the four constants 
e,,1,0 π , four operations  ÷×−+ ,,, , the relation  <  and above mentioned ten functions. To all 

this restrictions we leave the original notation. The set G together with the enumerated four 
constants, four operations, one relation and ten functions we call a  finite structure of n-digit 
decimal numbers. Because the operations in G do not fulfil neither the associative nor the 
distributive law, it is needed to build the theory of the curves and surfaces in  G 3 differently 
than in the space R 3. 

Only the constant functions fulfil over G  the well-known definition of continuity of 
a function over R . Let us denote   =Φ { absln,exp,arctan,arccos,arcsin,tan,cos,sin,, } and  

},,{ ×−+=Ω . Further let us denote by F1  the class of all such functions )(tf  of one variable  
∈t G, for which it holds: 

(1.3) ( ) ( ) ( )( ) Ftffttfconsttf 1)()()( ∈⇒Φ∈∨=∨= ; 
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(1.4) ( ) FffFff 1
21

1
21, ∈∗⇒∈   for  Ω∈∗   and if moreover 02 ≠f , then also Fff 1

21 ∈÷ ; 

(1.5) ( ) FtffFff 1
21

1
21 ))((, ∈⇒∈   for such  t , for which  ))(( 21 tff  is defined. 

Let us denote F2  the class of all such functions  ),( srf  of two variables  ∈sr, G, for 
which it holds: 

(1.6) ( ) ( ( ) ( ) )( ) FsrfsfsrfrfsrfFsfrf 2
21

1
21 ),()(),()(),()(),( ∈⇒=∨=∧∈ ; 

(1.7) ( )⇒∈ Fsrfsrf 2
21 ),(),,(  ( ) Fsrfsrf 2

21 ),(),( ∈∗  for  Ω∈∗   and if moreover  f 2 0≠ , 
then also Fff 2

21 ∈÷ ; 

(1.8) ( ) ( )( )FsrfFtf 2
2

1
1 ),()( ∈∧∈ Fsrff 2

21 )),(( ∈⇒   for such  sr, , for which  )),(( 21 srff  
is defined; 

(1.9) ( )⇒∈ Fsrfsrfvuf 2
321 ),(),,(),,( ( ) Fsrfsrff 2

321 ),(),,( ∈   (compare [1] ). 

By a curve in the space G 3 we understand such a set of all points ( ))(),(),( 321 tftftf  that 
Ftfi
1)( ∈  are functions of one variable ⊂∈ ϑτ ,t G ; ∈ϑτ , G.  By a surface in the space G 3 

we understand such a set of all ordered triplets ( )),(),,(),,( 321 stfstfstf  that Fstfi
2),( ∈  are 

functions of two variables ⊂∈ ϑτ ,t G,  ⊂∈ ξσ ,s G ;  ∈ξσϑτ ,,, G. For the curves and 
surfaces we will use the usual parametric equations 

(1.10) )(1 tfx = ,     )(2 tfy = ,       )(3 tfz = ,       ⊂∈ ϑτ ,t G,   ∈ϑτ , G , 

(1.11) x f t s= 1( , ) ,  ),(2 stfy = ,  z f t s= 3 ( , ) ,   t ∈ ⊂τ ϑ, G,  s ∈ ⊂σ ξ, G,  τ ϑ σ ξ, , , ∈ G  
respectively. 

By a  conical surface in the space  G 3  with a  base curve  K : ( )f t f t f t1 2 3( ), ( ), ( ) , 
t ∈ τ ϑ,   and with a  vertex  ( )V v v v= 1 2 3, ,  we understand a surface with parametric equations 

(1.12) 
( )
( )
( )

x f t s v f t
y f t s v f t
z f t s v f t

= + −
= + −
= + −

1 1 1

2 2 2

3 3 3

( ) ( )
( ) ( )
( ) ( )

,          t ∈ τ ϑ, ,  s ∈ σ ξ, . 

By a  cylindrical surface in the space  G 3
  with a base curve K : ( )f t f t f t1 2 3( ), ( ), ( ) , 

t ∈ τ ϑ,  and with a  direction vector  ( )ρv v v v= 1 2 3, ,  we understand a surface with parametric 
equations 

(1.13) 
x f t sv
y f t sv
z f t sv

= +
= +
= +

1 1

2 2

3 3

( )
( )
( )

,          t ∈ τ ϑ, ,  s ∈ σ ξ, . 

By a quadratic conical or quadratic cylindrical surface we understand such a conical or 
cylindrical surface, the base curve of which is - in the plane 0=z  - one of the further 
mentioned conic sections  ( rba ,,  are positive constants): 

(1.14) circle      trx cos⋅= ,   try sin⋅= ,  π2,0∈t ; 

(1.15)  ellipse         tax cos⋅= ,   tby sin⋅= ,  π2,0∈t ; 
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(1.16)  hyperbola   tax cos/= ,  tby tan⋅= ,  ( )2/,2/ ππ−∈t   or   ( )2/3,2/ ππ∈t ; 

(1.17)   parabola    tx = ,            2aty = ,      t ∈ τ ϑ, ,  

where the 3rd coordinate v3  of the vertex  ( )V v v v= 1 2 3, ,  or of the direction vector  
( )ρv v v v= 1 2 3, ,  is different from zero. 

Remark 1. 1. The curves and surfaces over  G  depends on the position with respect to 
the system of coordinates; in great distances from the origin the deformations are serious. 

Let us denote 89056723411 =x ; 87610943251 =y ; 45612389071 =z .  

Example 1. 1. If  G  has  10=n  ciphers, then 307185283.62 =π ; the circle  tx cos= , 
ty sin= , π2,0∈t  consists of 3071852836  points, but the translated circle txx cos1 += , 

tyy sin1 += , π2,0∈t  consists of  5  points only (see Fig.1). 

 
              

         

 

 

 

 

 

 

 

Example 1. 2. If  G  has 10=n  ciphers, then the 1st turn of the helix  tx cos= , ty sin= , 
tz = , π2,0∈t  consists of 3071852836  points, but the translated curve txx cos1 += , 

tyy sin1 += ,  tzz += 1 , π2,0∈t  has only the following  11 points: [ ]111 ,,1 zyx + ; 
[ ]111 ,, zyx ; [ ]1,, 111 +zyx ; [ ]1,,1 111 +− zyx ; [ ]2,,1 111 +− zyx ; [ ]3,,1 111 +− zyx ; 
[ ]3,1,1 111 +−− zyx ; [ ]4,1,1 111 +−− zyx ; [ ]4,1, 111 +− zyx ; [ ]5,1, 111 +− zyx ; [ ]6,1, 111 +− zyx . 

Example 1. 3.  If  G  has  8=n  ciphers, then 3185283,62 =π , the curve tx = , 
ty sin5,2 ⋅= , π2,0∈t  has 85383162  points, but the translated curve txx += 1 , 

tyy sin5,21 ⋅+= , π2,0∈t  has exactly 16  points (see Fig.2). ( We get these sixteen points 

successively for 0=t , ( )4,0arcsin;0∈t , )8,0arcsin;4,0arcsin∈t , )1;8,0arcsin∈t , 

)2;1∈t , 8,0arcsin;2 −∈ πt , ( 4,0arcsin;8,0arcsin −−∈ ππt , ( )3;4,0arcsin−∈ πt , 

)π;3∈t ,  ( 4,0arcsin; +∈ ππt ,  ( )4;4,0arcsin+∈ πt , 8,0arcsin;4 +∈ πt , 

( )5;8,0arcsin+∈ πt ,  )8,0arcsin2;5 −∈ πt , )4,0arcsin2;8,0arcsin2 −−∈ ππt , 
)6;4,0arcsin2 −∈ πt , )π2;6∈t . ) 

Example 1. 4. If  G  has  10=n   ciphers, then 307185283,62 =π , and the ellipse  
tx cos82,0 ⋅= ,  ty sin37,0 ⋅= ,  π2,0∈t   has 3071852836  points, but the translated ellipse 
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tx cos82,08905672341 ⋅+= ,  ty sin37,08761094325 ⋅+= , π2,0∈t  consists of 4  points 
only. 

2. Intersection of two conical and cylindrical surfaces, one of which is quadratic. 
Example 2.1. Let there be given a quadratic conical surface  P  by a base circle  K  with 

parametric equations  (1.14)  and a vertex  ( )V v v v= 1 2 3, , , v3 0≠ . Let there be given a conical 
surface  P1  by a curve  K1  with parametric equations  

(2.1) )(1 ugx = ,    )(2 ugy = ,   )(3 ugz = ;         ξη ,∈u ,    

and with a vertex  ( )321 ,, wwwW = . By using the mappings  TT ′,  we pass from the equations 
over G  to formally coincident equations over R. Let us put  ( )zyxA ,,= , ( )**** ,, zyxA = . 
According to  (1.4) we have  

(2.2) KA ∈ ⇔ 0222 =−+ ryx    ∧    0=z . 

If  KA ∈ , then  (1.12) implies 

PA ∈*     ⇔        

3
*

2
*

1
*

)(
)(

svz
yvsyy
xvsxx

=
−+=
−+=

 

and from there  

3

*

v
zs =  ,   

s
svxx
−
−=
1

1
*

;     
s
svyy
−
−=
1

2
*

   for  3
* vz ≠ .  By substitution into (2.2) we get 

(2.3) PA ∈*    ⇔   ( )21
* svx −  + ( )22

* svy −  =  ( )22 1 sr −   ,  

where 03 ≠v ,  3
* vz ≠  .  

If  1KA ∈ , then by (2.1)  and  (1.12)  we get 1
* PA ∈  if and only if 

(2.4) 
);();();(

,);();();(

3
*

2
*

1
*

321

zwmzzywmyyxwmxx
uugzugyugx

−+=−+=−+=
∈=== ξη

 

 

If we substitute from (2.4) into (2.3), we get for 1PPA ∩∈  the equation 

( )[ ]23131 /)()( vvzwmzxwmx −+−−+ + ( )[ ] −−+−−+ 2
3232 /)()( vvzwmzywmy  

( )[ ]233
2 /)(1 vzwmzr −+− 0= ,     and from this 

(2.5) ( ) ++ 2
21 cmc ( )243 cmc + ( ) 065

2 =+− cmcr ,  

where   =1c 313131 // vzvvvwxw +−− ;   =2c 31 / vzvx − ;   =3c 323232 // vzvvvwyw +−− ; 
=4c 32 / vzvy − ;    =5c 33 /)( vwz − ;  =6c  3/1 vz− .  From (2.5) we get a quadratic equation 

(2.6) ,098
2

7 =++ cmcmc  

where =7c 2
5

22
3

2
1 crcc −+ ;   =8c 65

2
4321 222 ccrcccc −+ ;   =9c  2

6
22

4
2

2 crcc −+    and  

 97
2

810 4 cccc −=   is the discriminant of the equation (2.6).  
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For 010 ≥c  and 07 ≠c  we get the solutions of quadratic equation (2.6) in the form 

7

108

2c
cc

m
±−

= . If these are substituted instead of  m  into  (2.4) , we get the asked results for  

*x , *y , *z . By using the mappings  TT ′,  we pass from the equations over  R  to formally 
coincident equations over  G  for the asked intersection 1PP∩ : 

0>r ;  ( )V v v v= 1 2 3, , , v3 0≠ ; ( )321 ,, wwwW = ; )(1 ugx = , )(2 ugy = , )(3 ugz = ,  ξη ,∈u ; 

=1c 313131 // vzvvvwxw +−− ;   =2c 31 / vzvx − ;    =3c 323232 // vzvvvwyw +−− ; 

=4c 32 / vzvy − ;   =5c 33 /)( vwz − ;   =6c  3/1 vz− ;    =7c 2
5

22
3

2
1 crcc −+ ; 

(2.7) =8c 65
2

4321 222 ccrcccc −+ ;   =9c  2
6

22
4

2
2 crcc −+ ;   97

2
810 4 cccc −= ; 

 
7

108

2c
cc

m
±−

=   for 010 ≥c  and 07 ≠c  ;  

)( 1
* xwmxx −+= ;    )( 2

* ywmyy −+= ;       )( 3
* zwmzz −+= . 

Example 2.2. Let there be given a quadratic conical surface  P  by a base circle  K  with 
parametric equations  (1.14)  and a vertex  ( )V v v v= 1 2 3, , , v3 0≠ . Let there be given 
a cylindrical surface P1 by a curve  K1 with parametric equations (2.1) and with a direction 
vector ( )321 ,, wwww =ρ . For the intersection 1PP∩  we get similarly as in the example 2.1 the 
following: 

0>r ; ( )V v v v= 1 2 3, , , v3 0≠ ;  ( )321 ,, wwww =ρ ;  )(1 ugx = ,  )(2 ugy = , )(3 ugz = ,  ξη ,∈u ; 

=1c 3131 / vvww − ;     =2c 31 / vzvx − ;    =3c 3232 / vvww − ;    

(2.8) =4c 32 / vzvy − ;  =5c 33 / vw− ;   =6c  3/1 vz−    and 

  ***
10987 ,,,,,,, zyxmcccc  are the same as in (2.7). 

Example 2.3. Let there be given a quadratic cylindrical surface P by a base circle K  with 
parametric equations (1.14) and a direction vector ( )321 ,, vvvv =ρ , v3 0≠ . Let there be given 
a conical surface P1 by a curve  K1 with parametric equations  (2.1) and with a vertex  
( )321 ,, wwwW = . For the intersection 1PP∩  we get similarly as in the example 2.1 the 

following: 

 ( )321 ,, vvvv =ρ , v3 0≠ ;   ( )321 ,, wwwW = ;   )(1 ugx = ,  )(2 ugy = ,  )(3 ugz = ,    ξη ,∈u ; 

=1c 313131 // vzvvvwxw +−− ;  =2c 31 / vzvx − ;   =3c 323232 // vzvvvwyw +−− ; 

(2.9) =4c 32 / vzvy − ;  =5c 0 ;  =6c 1  and    
***

10987 ,,,,,,, zyxmcccc  are the same as in (2.7). 

Example 2.4. Let there be given a quadratic cylindrical surface P  by a base circle K  
with parametric equations  (1.14)  and a direction vector  ( )321 ,, vvvv =ρ , v3 0≠ . Let there be 
given a cylindrical surface P1 by a curve  K1 with parametric equations (2.1) and with 
a direction vector ( )321 ,, wwww =ρ . For the intersection 1PP∩  we get similarly as above: 
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( )321 ,, vvvv =ρ , v3 0≠ ;    ( )321 ,, wwww =ρ ;   )(1 ugx = ,  )(2 ugy = ,  )(3 ugz = ,    ξη ,∈u ; 

=1c 3131 / vvww − ;   =2c 31 / vzvx − ;   =3c 3232 / vvww −  

(2.10) =4c 32 / vzvy − ;   =5c 0 ;   =6c  1   and 

  ***
10987 ,,,,,,, zyxmcccc  are the same as in (2.7). 

Remark 2.1. The examples for quadratic conical or cylindrical surface P  with a base 
conic K  with the equations (1.15) or (1.16) or (1.17) instead of (1.14) and for conical or 
cylindrical surface P  with a curve 1K  with parametric equations (2.1) are solved similarly.  

Remark 2.2. By using the equations (2.7) - (2.10) it is immediately possible to write 
a program for calculation of coordinates *** ,, zyx  of points 1

* PPA ∩∈ . It is more effective 
to map the surfaces P , 1P  and also their intersection 1PP∩  into the plane by using the 
transformation equations of the parallel mapping 

(2.11) 
zryrxrq
zryrxrp

531

420

++=
++=

  

where ir  are suitably chosen constants, zyx ,,  are right-angled coordinates of the point A  in 
the space and qp,  are right-angled coordinates of its image in the plane. In this way obtained 
pictures understood over R have some inaccuracies, but the same understood over G are 
accurate. 

Remark 2.3. Most of up-to-date computers is constructed so that the nth valid digit is 
after operation rounded by the (n+1)st digit, where the (n+2)nd digit is neglected. It is 
sufficient change suitably the mapping :T ′ R →G  and we obtain corresponding finite 
structure G  of n-digit decimal numbers. The important claim of  Remark 1.1 stays valid � it is 
sufficient to note the example 1.4  and the next example. 

Example 2.5. Let us take a computer, which rounds the 10th digit according to 11th digit. 
We have 10=n , 307185283.62 =π ; 89056723411 =x ; 87610943251 =y ; 

45612389071 =z . Similarly as in the Examples 1.1, 1.2 we consider the translated circle 
txx cos1 += , tyy sin1 += , π2,0∈t  and the 1st turn of the translated helix  txx cos1 += , 

tyy sin1 += , tzz += 1 ,  π2,0∈t . We can easy to obtain the following values: 
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       Interval            [ ]zyx ;;  

          999999499.00 ≤≤ t   [ 11 +x  ;      1y     ;     1z ] 

 774598523.05.0 ≤≤ t   [ 11 +x  ;      1y     ;  11 +z ] 

        551197047.1775598523.0 ≤≤ t   [ 11 +x  ;   11 +y   ;  11 +z ] 

        999999499.1552197047.1 ≤≤ t       [ 1x   ;   11 +y   ;  11 +z ] 

  117981105.25.1 ≤≤ t       [ 1x   ;   11 +y   ;  21 +z ] 

        999999499.2118981105.2 ≤≤ t   [ 11 −x  ;   11 +y   ;  21 +z ] 

 878993617.25.2 ≤≤ t   [ 11 −x  ;   11 +y   ;  31 +z ] 

        999999499.3879993617.2 ≤≤ t   [ 11 −x  ;       1y     ;  31 +z ] 

 444777676.35.3 ≤≤ t   [ 11 −x  ;       1y     ;  41 +z ] 

        189204177.4445777676.3 ≤≤ t   [ 11 −x  ;   11 −y    ;  41 +z ] 

        999999499.4190204177.4 ≤≤ t       [ 1x   ;   11 −y    ;   11 +z ] 

 755987235.55.4 ≤≤ t       [ 1x   ;   11 −y    ;   51 +z ] 

        999999499.5756987235.5 ≤≤ t   [ 11 +x  ;   11 −y    ;   51 +z ] 

  516000748.55.5 ≤≤ t   [ 11 +x  ;   11 −y    ;   61 +z ] 

        307185283.6517000748.5 ≤≤ t   [ 11 +x  ;       1y      ;  61 +z ] . 

It is easy to see from these values, that the translated circle has exactly 8  points (see 
Fig.3) and the 1st turn of the translated helix has exactly 15  points. 
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