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In the 1% part the finite structures of numbers are defined and - by means of
transformations - also conical and cylindrical surfaces over these structures are introduced.
At the principal difference between the theory of surfaces over these structures and over real
numbers points the Remark 1.1. In the 2™ part there is the construction of the intersection of
such two surfaces, at least one of which is quadratic. Remark 2.3 generalizes the validity of
this theory for today-constructed computers.

1. Finite structur es of numbers

Let n be a given integer. Let G be a finite set of exactly n-digit decimal numbers of the
form

(1.1) #c,c,c,Kc,x(10)™,

where ¢ [{0,1,K ,9} are ciphers, ¢, #0 for the numbers different from zero and
k UJ{0,1,K ,99}.

Let R be the set of all real numbers including the four constants 0,1,77,e, four binary

operations +,—,X,+, the relation < and ten functions \/_ ,sin, cos, tan, arcsin, arccos,

arctan, exp,In,abs. Let T: G - R be an embedding, i.e. mapping which maps an arbitrary
number of G into the same number of R. Let T" R - G be such a mapping, which maps
the number

(1.2) *c.c,cKc,C,,C.,KXx(10)™,

of R in an infinite decimal expansion into the number (1.1) of G.

By using the mappings T,T' we get in G associated restrictions of the four constants
0,1,71,e, four operations +,—,x,+, the relation < and above mentioned ten functions. To all
this restrictions we leave the original notation. The set G together with the enumerated four
constants, four operations, one relation and ten functions we call a finite structure of n-digit
decimal numbers. Because the operations in G do not fulfil neither the associative nor the
distributive law, it is needed to build the theory of the curves and surfaces in G* differently
than in the space R*.

Only the constant functions fulfil over G the well-known definition of continuity of
a function over R . Let us denote & = {\/_ ,81n, cos, tan, arcsin, arccos, arctan, exp, In,abs } and
Q = {+,—,x} . Further let us denote by 'F the class of all such functions f(t) of one variable
t UG, for which it holds:

(1.3)  ((f(®=const)O(f()=t)O(f OP))DO FOO'F;
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(14) (f,f,0F)0 f,0f,0F for OOQ and if moreover f, #0, thenalso f, = f, O'F ;
(1.5) (f,f,0F)0 f,(f,)0F forsuch t, for which f,(f,(t)) is defined.

Let us denote °F the class of all such functions f(r,s) of two variables r,sOG, for
which it holds:
1.6) ((f,(r). 1,(90F)0( (F(r.9 = £,)0(f (r.9) = 1,(9) )0 F(r.9)0%F;
1.7 (f(r.9), f,(r,90F )0 (f,(r,9)0f,(r,9)0°F for O0Q and if moreover f, 20,
then also f, + f, O°F ;

1.8) ((f,co0'F)a(f,r.90%F )0 ,(f,(r,9)0%F for such r,s, for which f,(f,(r,s))
is defined;

1.9 (f,(uv), ,(r,9).5,,90F )0 1,(f,(r,9), f,(r,9)0°F (compare [1]).

By a curve in the space G* we understand such a set of all points (f1 (t), f,(),f, (t)) that
f. (1) O'F are functions of one variable tD<T,19> 0G; 1,9 0G. By a surface in the space G*
we understand such a set of all ordered triplets (fl(t,s), f,(t,9),f, (t,s)) that f (t,s)0°F are
functions of two variables tD<T,z9> OG, SD<0,E> 0G; r1,8,0,£0G. For the curves and

surfaces we will use the usual parametric equations

(1.10) x=f,t), y=ft), z=ft), tO{FI)0G, 1,90G,
(1.11) x=f(t,s), y=f,(t,s), z=fyt,9, tO(r,d0 G, sO(0.é0 G, 1,9,0.60G

respectively.
By a conical surface in the space G > with a base curve K: (f,(0),f, (1), 1),

t 0(r,9) and with a vertex V = (v1 ,V, ,v3) we understand a surface with parametric equations

x=f,() +sv, = f, (1)
(1.12) y=f,®)+gv, - f,(1), t 0(r,9), sO{(o,é).
z=f,(t) +v; — (1)
By a cylindrical surface in the space G 3 with abase curve K : (fl(t), f, (1), f3(t)) ,
t O(r,9) and with a direction vector V= (v,,v,,v;) we understand a surface with parametric
equations
x=f(t) +sv,
(1.13) y=f,(t)+sv,, t 0(r,9), sO(o,&).
z=f5(t) +sv,
By a quadratic conical or quadratic cylindrical surface we understand such a conical or

cylindrical surface, the base curve of which is - in the plane z=0 - one of the further
mentioned conic sections (a,b,r are positive constants):

(1.14) circle  x=r[ost, y=rBint, t0(0,27);

(1.15) dlipse x=albost, y=Db8int, t0(0,27);
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(1.16) hyperbola x=a/cost, y=bant, tO(-7/2,7m/2) or tO(T/2,3m/2);
(1.17) parabola x=t, y=at’, t0(r,9),

where the 3™ coordinate v, of the vertex V= (vl,vz,v3) or of the direction vector

¥'=(v,,v,,v,) is different from zero.

Remark 1. 1. The curves and surfaces over G depends on the position with respect to
the system of coordinates; in great distances from the origin the deformations are serious.

Let us denote X, =1234567890; y, =5432109876; z =7890123456.

Example 1. 1. If G has n=10 ciphers, then 271=6.283185307; the circle X =cost,
y =sint, tD<0,27T> consists of 6283185307 points, but the translated circle X=X, +cost,

y=y, +sint, t D<0,27T> consists of 5 points only (see Fig.1).

]
y1+2 4 e o o
yl+1 4 ° °
y W 4 ° e o
Vi 1 ° ° ° yl'l 4 ° e o
yl_2 =+ ° o o
yl_l 4 o [ ] y1_3 4 o [ ]
O]  x-1 % X+ X ol x X3 x+6X
Fig. 1 Fig. 2

Example 1.2. If G has n=10 ciphers, then the 1* turn of the helix X =cost, y =sint,
z=t, tD<O,27T> consists of 6283185307 points, but the translated curve X=X +cost,

y=y, +sint, z=2z+t, tD<O,27T> has only the following 11 points: [Xl +1,y, Zl];
[xl, Yi zl]; [xl, Vi Z, +1]; [x1 -1,y 7 +1]; [x1 -1,y 7 +2]; [xl -1,y,, 7 +3];
[xl—l,yl—l,z1 +3]; [x1 -Ly -Lz +4]; [xl,y1 -1,z +4]; [xl,yl—l,zl+5]; [xl,y1 -1,z +6].

Example 1. 3. If G has n=8 ciphers, then 27r=6,2831853, the curve X=t,
y =2,50int, tD<O,27T> has 62831853 points, but the translated curve X=X +t,
y=y, +2,50int, tD<O,27T> has exactly 16 points (see Fig.2). ( We get these sixteen points
successively for t=0, tQ (O ;arcsin 0,4), tO <arcsin 0,4 ; arcsin 0,8), tO <arcsin 0,8 ; 1),
tO <1 ; 2), t D<2 ; 7T—arcsin 0,8> , tQO (ﬂ—arcsinO,S ; TT—arcsin 0,4> , tO (ﬂ—arcsin 0,4; 3),
tD<3;7T), tD(]T;IT+arcsin0,4>, tD(IT+arcsin0,4;4), tD<4;7‘[+arcsin0,8>,
tO (7T+ arcsin0,8 ; 5), tQd <5 ; 27T —arcsin 0,8), tO <27T— arcsin0,8 ; 27T —arcsin 0,4),
tD<27T—arcsin0,4 ; 6), tD<6 ; 27‘[). )

Example 1. 4. If G has n=10 ciphers, then 271=6,283185307, and the ellipse
x=0,82[¢ost, y=0,378int, tU <0,27T> has 6283185307 points, but the translated ellipse
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X=1234567890+ 0,82 [dost, y=5432109876+0,37 dint, tUl <0, 27T> consists of 4 points
only.
2. Inter section of two conical and cylindrical surfaces, one of which isquadratic.

Example 2.1. Let there be given a quadratic conical surface P by a base circle K with
parametric equations (1.14) and a vertex V = (vl,vz,v3) , v; #0. Let there be given a conical

surface P; by a curve K; with parametric equations
(21) X:gl(u)a y:gz(u)a Z:g3(U); UD<’75£>5

and with a vertex W = (W1 W, , W, ) By using the mappings T,T' we pass from the equations

over G to formally coincident equations over R. Let us put A=(x,y,z), A" = (x*, y*,z*).
According to (1.4) we have

(22) AOKe x*+y*-r*=0 0O z=0.
If AUOK,then (1.12) implies
X'= X + S(V,—-X)
AOP - y:= y + s(v,-y)
z

= SV3
and from there
z X —sv Y, . o
s=—, X= 1 L, y= % for z #v,. By substitution into (2.2) we get
v, -5 -

23) AOP - (X-svf+(y-suf=r2(-sf .
where v, #0, Z #v; .
If AOK,,thenby (2.1) and (1.12) we get A"P, if and only if

= g, (W); ul(n,£)
= z+tm(w; - 2);

= g, (u); y= g, (u);

X VA
X' = x+mw, —x); Y = y+mw,-y); 7

If we substitute from (2.4) into (2.3), we get for AJP n P, the equation
[X+ m(w; —X) = (Z+ m(w, — Z))Vl /V3]2+ [y+ mw, —y) _(Z+ m(w; — Z))Vz /V3]2 -
r 2[1 - (Z+ m(w; — Z))/v3:|2 =0, and from this
(2.5) (mcl +Cz)2 + (mc3 "'(:4)2 _rz(mcs +C6)= 0,

where C =W, —X-W,\V,/V,+2v,/V,; C,=X—-2V,/V;; C,=W,—-Y-WV,/V,+2v,/V,;
C,=y—-2v,/V;; C,=(z—-W,)/V;; C, = 1-2/v,. From (2.5) we get a quadratic equation
(2.6) c,mM +cm+c, =0,

where ¢, =¢’+c,’ -r’c,’; ¢ =2¢c, +2¢,c,-2r’c,c,; G = ¢, +c, -r’c,’ and

Co =C, —4C,C, is the discriminant of the equation (2.6).
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For ¢,=20 and c, #0 we get the solutions of quadratic equation (2.6) in the form

_ GG, . . .
m= e If these are substituted instead of m into (2.4) , we get the asked results for
C7
X, Yy, z . By using the mappings T,T' we pass from the equations over R to formally

coincident equations over G for the asked intersection Pn R :
r>0; Vvs= (Vl,Vz,V3), v; 20; W =(W1,W2,W3); X=g,(u), y=9,(U), z=g,(u), UD<’77€>;

C, =W —X-W\V,/V,+2v,/V;; C,=X—-2V,/V;; C=W,—Y-W\V,/V;+2V,/V,;

C,= Y-, /V,; C=(z-W,)/V,; ¢, =1-2/v;; ¢, =¢’+¢,’ —r’c’;

2.2 2

(2.7) ¢, =2¢C, +2¢,C, —=2r’c,C,; C = C,+C,°—r’c,’; C,=C, —4C,C,;

_Csi\/g

2c,

m= forc,=20and c, #0 ;

X' =X+m(w, = X); y =y+mw, —y); z*:z+m(w3—z),

Example 2.2. Let there be given a quadratic conical surface P by a base circle K with
parametric equations (1.14) and avertex V= (vl,vz,v3), v, #0. Let there be given

a cylindrical surface P; by a curve K; with parametric equations (2.1) and with a direction
vector W= (WI,WZ,W3). For the intersection P n P, we get similarly as in the example 2.1 the

following:

r>0;V=(v,v,v), v, #0; \ﬁ:(vvl,wz,w3); X=g,(u), y=0,(u), z=g,(u), ud(n.é);
C,=W-—WV,/V;; C=X-2V,/V;; C=W,-WV,/V;

28) ¢, =y-azv,/v;; c,=—-W,/v;; C,= 1-2z/v, and
C,,C,Cy,Cy, M, X, y*, Z  are the same as in (2.7).

Example 2.3. Let there be given a quadratic cylindrical surface P by a base circle K with
parametric equations (1.14) and a direction vector V= (VszaVz)a v, #0. Let there be given

a conical surface P; by acurve K; with parametric equations (2.1) and with a vertex
W :(V\II,WZ,W3). For the intersection Pn B we get similarly as in the example 2.1 the

following:
V=(vv), vz 05 W=(w,wow); x=g,W), y=0,(0), z=g,), ub{n.é);
C =W —X—W\V,/V,+2V,/V; ; C,=X—2V,/V;; C=W,-y-W\V,/V,+2V,/V, ;
(29) c,=y-a2,/v,; ¢,=0; ¢,=1 and
C,,C,Cy,Cy, M, X, y*, Z  are the same as in (2.7).

Example 2.4. Let there be given a quadratic cylindrical surface P by a base circle K
with parametric equations (1.14) and a direction vector V= (Vl,vz,v3 ), v, #0. Let there be

given a cylindrical surface P; by acurve K; with parametric equations (2.1) and with
a direction vector W= (Wl W, W, ) For the intersection P n B, we get similarly as above:
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V=(v.v,.v), vi20; W=(w,w,w); x=g,u), y=g,(), z=g,(u), ubD(n,&);

C,=W —WV,/V;; C,=X—2V,/V,; C,=W,-W\V,/V,
(2.10) c,=y-2v,/v;; ¢, =0; c,=1 and
C,,C,,Cy,Cy, M X, Y ,Z are the same as in (2.7).

Remark 2.1. The examples for quadratic conical or cylindrical surface P with a base
conic K with the equations (1.15) or (1.16) or (1.17) instead of (1.14) and for conical or
cylindrical surface P with a curve K, with parametric equations (2.1) are solved similarly.

Remark 2.2. By using the equations (2.7) - (2.10) it is immediately possible to write
a program for calculation of coordinates X', y*, Z" of points A"[JP n P. It is more effective
to map the surfaces P,P and also their intersection Pn P into the plane by using the
transformation equations of the parallel mapping

p=r,x+ry+r,z

2.11)
q=rX+ny+rz

where I, are suitably chosen constants, X, Y,z are right-angled coordinates of the point A in
the space and p,q are right-angled coordinates of its image in the plane. In this way obtained
pictures understood over R have some inaccuracies, but the same understood over G are
accurate.

Remark 2.3. Most of up-to-date computers is constructed so that the n™ valid digit is
after operation rounded by the (n+1)" digit, where the (n+2)nd digit is neglected. It is
sufficient change suitably the mapping T':R - G and we obtain corresponding finite
structure G of n-digit decimal numbers. The important claim of Remark 1.1 stays valid — it is
sufficient to note the example 1.4 and the next example.

Example 2.5. Let us take a computer, which rounds the 10" digit according to 1" digit.
We have n=10, 2m=6.283185307; X =1234567890; vy, =5432109876;

z, =7890123456. Similarly as in the Examples 1.1, 1.2 we consider the translated circle
X=X +cost, y=Yy, +sint, tD<O,27T> and the 1* turn of the translated helix x= X, +cost,

y=y, +sint, z=z +t, tl <O, 27T> . We can easy to obtain the following values:

y
yi+l+ ° ° °
y1 -+ [ ] [ ]
yi-1 + ° ° °
i
]
0 Xi-1 X, X+l X
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I nterval [ X 5y ; z ]
0<t<0.499999999 [x+1:; 'y, 5 7]
0.5<1t<0.523598 774 [ +1; 'y, ; z+1]
0.523598775<t<1.047197 551 [X +1; y,+1 ; z+1]
1.047197552<t<1.499999 999 [X ; Yy, +1; z+1]
1.5<t<2.105981 117 [X ; Yy, +1; z+2]
2.105981118 < t<2.499999 999 [X—-1; y+1; z+2]
2.5< t<2.617993878 [ —1; y,+1; z+3]
2.617993879 < £ <3.499999 999 [x —1; Yy, ; z+3]
3.5 t<3.676777 444 [x —1; y, ; z +4]
3.676777 445 < t <4.177 204189 [ —-1; y, -1 ; z+4]
4.177204190 < t <4.499 999999 [X 5 Yy, -1 ; z+1]
4.5< t1<5.235987 755 [X 5 Yy,—1 ; z+5]
5.235987 756 < 1 <5.499 999 999 [x,+1; y, -1 ; z+5]
5.5< t<5.748000516 [ +1; y,-1 ; z+6]
5.748000517 < t<6.283185307 [x +1; y, ; 7 +6].

It is easy to see from these values, that the translated circle has exactly 8 points (see
Fig.3) and the 1* turn of the translated helix has exactly 15 points.
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